
Journal of Machine Learning for Modeling and Computing, 4(1):77–93 (2023)

ASSESSMENT OF NEUROIMAGING DATA

AND IDENTIFICATION OF ALZHEIMER’S

DISEASE USING EXTREME LEARNING

MACHINES

Dharini Raghavan,∗ K.V. Suma, & Puneeth N Ganesh

Department of Electronics and Communication, M S Ramaiah Institute of
Technology, Bangalore, Karnataka 560054, India

*Address all correspondence to: Dharini Raghavan, Department of Electronics and
Communication, M S Ramaiah Institute of Technology, Bangalore, Karnataka 560054,
India, E-mail: dhariniraghavan2001@gmail.com

Original Manuscript Submitted: 4/4/2023; Final Draft Received: 4/14/2023

Alzheimer’s disease (AD), one of the most common forms of dementia, is a cognitive disorder that

is progressive in nature and causes a dynamic deterioration of the mental state of an individual. It

severely damages the brain cells, neurotransmitters, and nerves, leading to irreparable damage to

the brain, which is one of the major causes of dementia. Early identification, assessment, and timely

diagnosis are of paramount importance to slow down the progression of the disease, which calls for

the design and development of algorithms and technology-aided tools for accurate detection, diagno-

sis, and prediction of the severity of Alzheimer’s disease. To provide a solution to this, we propose an

extreme learning machine (ELM) algorithm that is trained on neuroimaging data from longitudinal

MRI scans obtained from the OASIS database. We adopt an extensive feature engineering pipeline

to choose the most significant features for early identification of the onset of dementia. We obtain an

overall accuracy of 98.3%, sensitivity of 0.956, specificity of 0.962, and F1 score of 0.972. We also

show that our proposed ELM algorithm outperforms several other contemporary classifiers based on

a range of evaluation metrics. The paper also provides a feasibility analysis of the proposed model for

real-time clinical deployment.

KEY WORDS: dementia, Alzheimer’s disease, magnetic resonance imaging, extreme
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1. INTRODUCTION

Alzheimer’s disease (AD), which is an irrevocable cognitive disorder, is one of the most com-
mon forms of dementia. It is known to have affected about 55 million people worldwide, among
which over 60% of them belong to low- and middle-income countries. The number of cases of
Alzheimer’s disease is exponentially increasing, with an average of 10 million cases every year.
AD is expected to affect about 150 million people by 2050, thus leading to severe economic
and medical consequences. Dementia or Alzheimer’s diseaseis caused by abnormal deposits
of proteins in and around the cells of the brain. For instance, the amyloid protein produces
clumps around the brain cells, and another protein called tau produces tangles around the brain
cells. Early diagnosis of Alzheimer’s disease is highly challenging and often involves expensive
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and invasive tests that are available only in sophisticatedclinical settings, which makes them
infeasible for common people to adopt. For instance, biomarkers of amyloid and phosphorylated
tau assessed through cerebrospinal fluid examinations, PETscans, and plasma assays are use-
ful for Alzheimer’s disease diagnosis, but these examinations are not appropriate for screening
potential Alzheimer’s disease in primary care or communitycontexts. Numerous studies have
shown that there is no proven way to fully treat or stop the progression of Alzheimer’s disease
(De Strooper and Karran, 2016). In order to avoid irreversible memory loss, this calls for the
creation of extremely reliable and accurate methods for AD early detection, particularly at the
presymptomatic stages (Galvin, 2017).

To categorize the severity of AD under various conditions using images from various modal-
ities, several researchers have recently suggested machine learning– and deep learning (DL)–
based medical imaging methods (Aldhyani et al., 2020; Zarandi et al., 2011; Korolev et al.,
2017; Litjens et al., 2017; Qiu et al., 2018; Zhang et al., 2001b; Jenkinson et al., 2002). Advanced
neuroimaging methods, such as positron emission tomography (PET) and magnetic resonance
imaging (MRI), have been extensively used to find structuraland molecular biomarkers for the
detection of onset of AD (Bartos et al., 2019; Fonov et al., 2011; Vidoni et al., 2012). MRI is
a noninvasive imaging technique that offers crucial details about internal bodily structures, in-
cluding their location, shape, and size. It offers a noticeable soft tissue contrast, enhancing the
clarity of images that are captured for analysis. Functional and structural imaging are the two
general categories for MRI, with tasking-state and resting-state functional imaging falling under
functional imaging. T1-weighted MRI, T2-weighted MRI, anddiffusion tensor imaging are the
three types of structural MRI imaging.

Accurate understanding of the human brain’s processes is also aided by PET imaging. The
diffusion of R18 fluorodeoxyglucose (FDG), which provides information on the brain glucose
metabolic rates (CMRglc), is used in PET modality to create neuroimages. CMRglc is used to
distinguish between AD and other types of dementia. When it is difficult to distinguish between
variations in pathological and physiological morphology,FDG PET can be especially useful.

In order to effectively identify and categorize brain disorders, deep learning–aided techniques
have gained popularity due to their improved robustness andaccuracy in feature extraction. Fea-
ture representation and extraction play a vital role in the analysis of medical images. Numerous
pattern recognition techniques, including support vectormachines (SVM), logistic regression
(LR), linear program boosting method (LPBM), linear discriminant analysis (LDA), and support
vector machine-recursive feature elimination (SVM-RFE),have been widely used to identify
and classify AD as well as predict the course of the disease (Rathore et al., 2017). Deep learn-
ing has the advantage of automatically identifying the features from a given dataset for a given
application. This is typically not feasible using traditional feature extraction techniques, which
necessitate some prior knowledge for feature extraction. Deep learning–based approaches are
also capable of discovering novel features that are suitable for specific uses; this is very helpful
in classifying and predicting fatal disorders, which in turn helps to avoid their occurrence by
early detection.

Although there has been significant improvement in medical analysis using machine learn-
ing, there are some problems that researchers still face. ADdiagnosis is usually a multiclass
classification problem, and the brain’s structure has features that have high correlation, leading
to certain disadvantages.

In this paper, we propose a robust extreme learning machine that is trained to identify the
onset of Alzheimer’s disease based on features obtained from longitudinal MRI scans. The pro-
posed algorithm is compared with state-of-the-art machinelearning classifiers based on metrics
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such as accuracy, sensitivity, specificity, and F1 score. The paper is organized into the following
sections. Section 2 presents an overview of the existing implementations and approaches per-
taining to Alzheimer’s disease identification and prediction of progression. Section 3 describes
the methodology adopted in this paper, followed by an analysis of the results obtained in Section
4. Concluding remarks and future implementations are discussed in Section 5.

2. RELATED WORK

Recently, several computer vision algorithms (Suma et al.,2022a) have been used to carefully
examine significant patterns in the brain tissues of AD patients and thereby derive methodolo-
gies to aid early disease detection and thus suppress its effects to some degree. The significance
of influential biomarkers for image classification has been emphasized by numerous studies.
The region-based method of feature extraction for AD classification using MRI and PET im-
ages has been suggested by Zhang et al. (2011), Liu et al. (2015), Suk et al. (2015), and Suma
et al. (2022b). Human brain scans are used to map the first fourmoments and the entropy of
histograms of anatomical regions of interest in order to findregional features. Numerous studies
have used machine learning– and deep learning–based modelsto identify significant structural
variations in the entorhinal cortex, hippocampus, and hippocampus regions of the brain by con-
trasting the brain tissues of AD patients and healthy individuals. Different imaging methods,
including structural and functional magnetic resonance imaging, single-photon emission com-
puted tomography (SPECT), diffusion tensor imaging (DTI),and positron emission tomography
(PET), are used to detect changes in the brain tissues such asthe degeneration of brain cells.

Payan and Montana (2015) proposed a pattern classification system and tested an algorithm
that combines 3-D convolutional neural networks (CNNs) andsparse autoencoders for the pre-
diction of AD. In order to combine multimodal features from MRI and PET scans and further
categorize the severity of AD, Liu et al. (2015) found 83 ROIs. These ROIs will be used to train
a neural network with multiple layers of autoencoders.

The quality of the data is important in computer vision applications, and smaller datasets
frequently result in less accurate models. To address the issues caused by a limited dataset, re-
searchers have turned their attention to recent developments in deep learning such as the use of
residual dense neural networks and batch normalization. These also help with automatic feature
generation, making them useful for training 3-D MRI images without intermediary feature ex-
traction. A significant restriction of brain MRI data is related to its high dimensionality (Liu et
al., 2020), which requires the use of significant computational power and a sizable dataset for
deep neural network training in order to achieve a significant level of accuracy in classification
tasks. Researchers have begun to use ensemble-based methods to overcome the constraints pre-
sented by computational complexity, high dimensionality,and lower accuracy due to the small
datasets in tasks related to AD identification and classification.

A classification based on an ensemble of DL architectures is suggested by Ortiz et al. (2016)
for the early detection of AD. The key feature of this method is that gray matter taken from the
brain is divided into 3-D patches based on areas identified bythe automated anatomical labeling
atlas. The resulting patches are used to train numerous deepbelief networks, and an ensemble
voting method is used to carry out the final classification. Toextract the resident features from
MRI scans that are subsequently used for AD classification, Li et al. (2018) have suggested
a multiple cluster–based DenseNet. Extraction of 3-D patches is carried out from each of the
numerous local regions that make up the complete cerebral cortex. Using k-means clustering,
these extracted patches are then further organized into clusters, and patch features are pulled
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from each cluster using DenseNet. The classes are derived byclustering the features that were
learned from each of these groupings. To determine the final classification for the image, the
predictions received from each local region are combined. It is also claimed that segmentation
and rigid registration as part of image preprocessing are not necessary for this technique of
feature extraction.

Gorji and Kaabouch (2019) suggested a robust convolutionalneural network architecture that
is used to extract high-quality features from brain MRI scans and is used to categorize them as
either healthy, early mild cognitive impairment, or late mild cognitive impairment (LMCI). The
analysis is done in sagittal view, and the results show that LMCI and control normal (CN) groups
can be classified with 94.54% accuracy. Basheera and Sai Ram (2019) suggested a method for
extracting gray matter from the human brain and classifyingthe features that were extracted
using a modified CNN architecture. The voxels were enhanced using a Gaussian filter, and then
the skull stripping method was used to remove redundant tissues. A hybrid, independent, and
improved component analysis was used to conduct voxel segmentation. CNN was supplied with
segmented gray matter, and this method had a 90.47% accuracyrate.

Karim et al. (2017) proposed a multi-task binary classification, which is used to categorize
subjects with mild cognitive impairment (MCI), Alzheimer’s disease (AD), and normal control
(NC) subjects. The suggested method has a 91% accuracy rate.Fusion on the fully connected
layer as well as on a single-projection CNN output were both used in this technique.

Among all the ROIs, the hippocampus was found to be the most significant anatomical and
impacted area in AD patients. Numerous studies (Amoroso et al., 2018; Beg et al., 2013; Chupin
et al., 2009; Gerardin et al., 2009; Ho et al., 2011; Leung et al., 2010; Lindberg et al. 2012;
Platero and Tobar, 2016; Shen et al., 2012; Li et al., 2012) have suggested different approaches
for computing the volumetric characteristics and shape from bilateral hippocampi. Cao et al.
(2018) has proposed a multi-task DL technique, which is usedto segment the hippocampal re-
gion of the brain using MRI scans, along with clinical score regression. A method for performing
hippocampal segmentation using anatomical and probabilistic priors was suggested by Chupin
et al. (2009). A technique to gauge the hippocampal region’svolumetric parameters was created
by Platero and Tobar (2016). Using MRI, this data was used to separate AD/MCI patients from
healthy groups. A fast, multi-atlas segmentation technique was used. For the purpose of diag-
nosing AD, shape analysis is frequently combined with volumetric analysis of the hippocampus
to capture the complex morphology of this part of the brain.

In the following section, we describe our approach to identify and classify the onset of AD.

3. MATERIALS AND METHODS

Figure 1 represents the overall methodology adopted in thiswork. Initially, longitudinal MRI
scans are preprocessed, and feature engineering steps are applied to obtain clinical features from
the neuroimages. These features are obtained from the OASIS2 database (Marcus et al., 2007)
and are then iterated over a forward feature selection algorithm to select the most significant
features that contribute to the identification of Alzheimer’s disease. The features are then ranked
based on priority and fed to an extreme learning machine network that achieves exceptional
training speed by eliminating the gradient-based technique. The ELM network is then tuned us-
ing various hyperparameter tuning techniques for achieving robust performance. The proposed
network is compared with off-the-shelf machine learning classifiers based on several evaluation
metrics. In biomedical applications, sensitivity is an evaluation metric that is given the high-
est priority since it quantifies the ability of the algorithmto predict the proportion of patients
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FIG. 1: Proposed methodology

possessing a particular disease. Hence, in our case, sensitivity of the model would quantify the
ability of the model to rightly identify patients with the onset of Alzheimer’s disease. The fol-
lowing subsections describe the methodology in detail.

3.1 Dataset Description

The dataset used in this paper consists of clinical parameters of 150 subjects obtained from lon-
gitudinal MRI scans. The subjects are aged between 60 and 96 years, each subject was reported
to visit the hospital at least twice, and the duration of separation between the visits was at least
one year, for a total of 373 imaging sessions. The subjects include both males and females, and
for each of them, three or four T1-weighted MRI scans are included as a part of the dataset. Out
of the 150 subjects under consideration, 72 subjects were identified as nondemented. Sixty-four
subjects were characterized as having dementia during their initial visit to the hospital, out of
which 51 subjects were diagnosed with Alzheimer’s disease of mild to moderate severity. The
remaining 14 subjects were identified as not having dementiaduring their initial visit but were
later diagnosed with dementia during their subsequent visit. Table 1 presents an overview of the
dataset adopted in this work.

3.2 Exploratory Data Analysis (EDA)

We adopted a range of data visualization techniques to obtain critical information about the dis-
tribution of classes, analyze the age groups that are most affected by Alzheimer’s disease, and
determine the correlation between various clinical features under consideration. A correlation
analysis is performed alongside feature selection to discard redundant features. Figure 2 illus-
trates the distribution of classes in the dataset where mostof the subjects are classified as not
having dementia, followed by the demented group. The converted category represents the num-
ber of subjects that were nondemented during their initial visit but were identified as demented
during their subsequent visit.
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TABLE 1: Dataset description

Parameter Subjects
Demented 64

Nondemented 72

Mild/moderate Alzheimer’s disease 51

Demented during subsequent visit 14

Total 150

FIG. 2: Distribution of classes

Figure 3 portrays the distribution of demented and nondemented categories with respect to
the gender ratio. It can be inferred that most females are nondemented as compared to males,
which puts males at a slightly higher risk of dementia.

Analyzing age groups that are most likely to be affected withAlzheimer’s disease is the first
step toward developing algorithms for early identificationof its onset. Figure 4 depicts a plot of
the distribution of age groups and the corresponding numberof subjects belonging to that age
group to have been diagnosed with Alzheimer’s disease. Subjects in the age group between 73
and 78 years are seen to be the most affected with dementia andits progression.

3.3 Feature Engineering

This subsection presents a brief overview of the different features adopted in this paper for
achieving the task of early detection of the onset of Alzheimer’s disease.

3.3.1 Clinical Dementia Rating (CDR)

This metric is obtained from interviews of the subject and the informant by a clinician who
characterizes a subject based on six different parameters,namely: memory, orientation, problem
solving, community affairs, hobbies, and personal care. The rating is based on a 5-point scale,
where a CDR of 0 indicates no dementia, 0.5 indicates very mild AD, 1 indicates mild AD, and
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FIG. 3: Distribution of classes based on gender ratio

FIG. 4: Analysis of age groups affected with dementia

2 indicates moderate AD. The scores for the six individual parameters are provided initially, and
a cumulative score is calculated using an algorithm. This serves as an important parameter in
determining the level of dementia a subject suffers from andits progression.

3.3.2 Estimated Total Intracranial Volume (ETIV)

In the study of neurodegenerative disorders, it is important to perform volumetric analysis of
the brain to estimate the maximum premorbid brain volume. But on analysis, it was found that
the average value of eTIV neither varied with time nor with the subjects. On an average, men
showed∼12% larger eTIV than women.

3.3.3 Cognitive Impairment

Cognitive impairment is a state of the mind that causes retarded memory, difficulty in compre-
hending new information, and lack of decision-making ability. On a scale of 30, a normal person
is expected to have a cognition score of 24, whereas a score of19 to 23 indicates mild cognitive
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impairment, a score of 10 to 18 indicates a moderate cognitive impairment, and a score below 9
indicates severe cognitive impairment.

3.3.4 Mini-Mental State Examination Score (MMSE)

The Mini-Mental State Examination (MMSE) is a 30-point (0 being the worst and 30 being the
best) questionnaire that is used extensively in clinical and research settings to measure cognitive
impairment. It is commonly used in medicine and allied health to screen for dementia. It is also
used to estimate the severity and progression of cognitive impairment and to follow the course
of cognitive changes in an individual over time, thus makingit an effective way to document an
individual’s response to treatment.

Alongside the above clinical parameters, the normalized whole-brain volume (nWBV) and
the atlas scaling factor (ASF) are also considered. The nWBVis a percentage of all the volu-
metric pixels (voxels) in the atlas masked image that are classified as gray or white matter in
the tissue segmentation process. The ASF is a computed scaling factor used for transforming the
native brain space and skull to the atlas target.

To identify potential relationships between the features under consideration and to determine
outliers and redundant features, a correlation matrix as shown in Fig. 5 is plotted. The matrix
depicts the fact that the delay in MRI imaging sessions that aparticular subject has undergone is
directly related to the number of visits to the hospital. Another set of highly correlated features
is the clinical dementia rating index and the category to which a subject belongs (nondemented,
demented, or converted).

3.4 Comparison of Classification Algorithms

In this paper, we train various binary classification algorithms for identification of Alzheimer’s
disease and its onset. The algorithms are evaluated under different metrics, which are described
in the following section, and the most robust model is selected based on its performance on these
metrics as well as the computational complexity of the algorithm.

3.4.1 Logistic Regression (LR)

Logistic regression (LR) is a statistical model that is usedin binary classification problems and
helps model the target variable using the logistic or the sigmoid function, given by

F (x) =
1

1+ e−x
=

ex

1+ ex
. (1)

Equation (1) converts the range of values that the model deals with from (−k, k) to (0, 1).
Assumingp(x) to be a linear function inx, and applying a logit transformation, we obtain the
following mathematical model:

log
p(x)

1− p(x)
= a0 + a ∗ x. (2)

Since the output of the logistic regression algorithm is a class probability, Eq. (2) can be fit
using a likelihood estimation, given by
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FIG. 5: Correlation matrix

L(a0, a) =
n
∏

i=1

p(xi)
yi [1− p(xi)]

(1−y
i
)
, (3)

where the output isp if y = 1 or 1− p if y = 0.

3.4.2 k-Nearest Neighbors (KNNs)

The concept behind the working of k-nearest neighbors (kNNs) can be described as the process
of finding the closest point to the given input. The algorithmclassifies unseen test points using
majority votes from the k-nearest neighbors. The first step in the algorithm is to apply a trans-
formation to the data points to convert them into vectors. The algorithm works by finding the
distance between each data point and the test data point and then finds the probability of the
points resembling the test data. Finally, classification isbased on the points that share highest
probabilities. After the computation of the Euclidean distance, the inputx is assigned to the class
with the highest probability, given by

P (y = j | X = x) =
1
k

∑

i∈A

I(yi = j). (4)
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3.4.3 Naive Bayes (NB)

Naive Bayes (NB) is a supervised learning algorithm that applies the Bayes theorem to predict
output class probabilities, given by

p(A | B) =
p(A)p(B | A)

p(B)
. (5)

The NB algorithm finds the class of observationyi, given the set of features. Assuming the
set of features are given as{x1, x2 . . . xn}, the NB algorithm can be formulated as follows:

p(yi | yix1, x2 . . . xnx1, x2 . . . xn) =
p(yi)p(x1, x2 . . . xn | yi)

p(x1, x2 . . . xn)
. (6)

3.4.4 Support Vector Machines (SVMs)

The major goal of support vector machines (SVMs) is to find themost optimal hyperplane that
separates the data points with maximum margin. The algorithm orients the hyperplane at the
maximum distance from the closest member of both classes. Toachieve this, SVMs solve the
following optimization problem:

min
w,b

1
2
||w||

2

subject toyi(xi + w ∗ b) ≥ 1

for i = 1, 2, 3 . . . n.

(7)

3.4.5 Decision Trees (DT)

The algorithm selects the best attribute and assigns it as the decision node, using the attribute
selection measure (ASM) to split the given records. The ASM is a heuristic for selecting the
best criterion to partition the data. The ASM ranks each feature based on a set of rules, and the
best attribute or feature is chosen as the splitting attribute. In this paper, we use the information
gain as an ASM to iteratively select the best set of attributes, which is defined as the difference
between the entropy before split and average entropy after split, based on a selected attribute.
Information gain is mathematically described as

I(T ) = −
m
∑

i=1

pilog2pi , (8)

wherepi is the probability that a tupleT belongs to classCi.

3.4.6 Random Forest Classifier (RFC)

Random forest classifiers (RFCs) are an ensemble of decisiontrees, where the final prediction
of the algorithm is based on the individual predictions fromeach decision tree. This is mathe-
matically formulated as

RFfi =

∑

j∈T normfij

T
, (9)
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whereT is the total number of decision trees,normfij is the normalized featurei in treej, and
RFfi is the importance of featurei calculated over all trees in the RFC model.

3.4.7 Gradient Boosting (GB)

The gradient boosting (GB) classifier is an ensemble method that combines predictions from
several base classifiers. The algorithm uses the cross-entropy loss function, which is given by

L = −[yilog10p + (1− yi)log10(1− p )]. (10)

3.5 Extreme Learning Machine (ELM)

Conventional neural networks employ gradient-based training algorithms, such as back propa-
gation, that often do not achieve the global optimal solution. These algorithms are dependent on
the initialization of parameters and the complexity of the feature space and hence often converge
at local extrema. Unlike traditional algorithms, extreme learning machines (ELMs) assign ran-
dom weights to the nodes between the input layer and the hidden layer, and these values are kept
fixed throughout the training process rather than iteratively updating the weights (Wang et al.,
2022). ELMs only learn the weights between the hidden layer and the output layer, and hence
they tend to converge much faster than the traditional gradient-based algorithms. ELMs achieve
a comparable performance to other deep neural networks while maintaining a lower computa-
tional complexity. The process of ELM training can be categorized into two stages, namely:
random parameter initialization and linear parameter solution. Random weightswi and biasbi
are initialized in the hidden layer and remain unchanged during the training process. The input
vector is then mapped into a feature space with stochastic parameter values and nonlinear acti-
vation functions, which shows superior performance to iteratively trained parameters. The ELM
achieves robust generalization capability by using a piecewise approximation for a nonlinear
continuous activation function. In the next step, the output weight matrixβ is obtained using the
Moore–Penrose inverse, and it is then formulated as a linearproblem.

Consider the following training set:

x = {x1, x2, x3, . . . xN}, (11)

whereN represents the total number of samples in the training set, and xi represents theith
training sample.

The set of targets are represented as:

t = {t1, t2, t3, . . . tN}, (12)

whereti is an array of binary values containing the class values for the xi sample from the
training set. The final output of the ELM is denoted as

oj =
L
∑

i=1

βigi(x) =
L
∑

i=1

βigi(wi ∗ xj + bi), (13)

wherej = 1, 2, 3, . . .N, gi(x) is the activation function in the hidden layer of the network.
The objective function of the ELM is the one that minimizes the loss between the predicted and
actual values. The commonly used function is the mean squared error (MSE), which is defined
as
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MSE =
N
∑

i=1

(tij − oij)
2
, (14)

wherej = 1, 2, 3, . . .m, N is the total number of training samples, andi andj are the indices
for the training sample and the output node, respectively.

Initially the weights matrix is constructed for the input layer, given by the following:

W =







rand · · · rand
...

...
...

rand · · · rand






. (15)

The output matrix of the hidden layer is calculated, and an activation function is applied, which
introduces nonlinearities in the network.

H = W ∗X. (16)

The Moore–Penrose pseudoinverse is computed for the outputmatrix of the hidden layer, which
is mathematically described as follows:

H+ = (HT ∗H)
−1

∗HT . (17)

The output weight matrixβ is computed as

β = H+ ∗ T. (18)

Equation (18) is used to compute the output matrix for the testing data, and a resultant matrix is
obtained, given as follows:

O = H ∗ β. (19)

The Softmax algorithm is used to obtain the final class probabilities, and the output matrixO is
compared with the set of targetst to evaluate the performance of the algorithm.

3.6 Evaluation Metrics

To select the most robust model for Alzheimer’s disease classification, a range of evaluation
metrics are adopted. The following metrics are considered in this work. Accuracy is a measure
of the number of total observations (both positive and negative) that are correctly classified.

In terms of true positives (TP ), true negatives (TN ), false positives (FP ), and false nega-
tives (FN ), accuracy can be computed as

Accuracy =
TP + TN

TP + TN + FP + FN
. (20)

Specificity and sensitivity provide valuable performance benchmarks for evaluating the pre-
dictive performance of binary classifiers. Specificity quantifies the percentage of true negatives
(TN ), which in our case is the number of correct predictions madeon the nondemented subjects.
It is calculated as
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Specificity =
TN

TN + FP
. (21)

Sensitivity, on the other hand, quantifies the proportion oftrue positives (TP), or the recall
rate, which is the number of correct predictions on the demented records. In this paper, we pri-
oritize sensitivity over specificity since it is of prime importance to rightly predict a demented
record rather than failing to classify a nondemented record. Sensitivity is mathematically calcu-
lated as

Sensitivity =
TP

TP + FN
. (22)

F1 score is defined as the harmonic mean of the precision and recall that quantifies the
performance of a classification algorithm. It is mathematically given as

F1Score =
2 ∗ Precision ∗ Recall

P recision+Recall
, (23)

where precision is the percentage of positive samples that are rightly predicted, which is mathe-
matically given by

Precision =
TP

TP + FP
. (24)

4. RESULTS AND DISCUSSION

We have compared the performance of several machine learning classifiers, namely: random
forest classifier (RFC), decision trees (DT), support vector machines (SVM), naı̈ve Bayes clas-
sifier (NB), k-nearest neighbors (kNNs), logistic regression (LR), gradient boosting classifier
(GB), and extreme learning machines (ELMs). Table 2 presents a performance comparison of
the various classifiers under consideration, and on experimentation it was found that the pro-
posed extreme learning machines outperformed the contemporary classifiers.

As described in the previous section, the algorithms were evaluated on metrics such as ac-
curacy, sensitivity, specificity, andF1 score. The performance of the algorithms based on these
parameters is presented in Tables 2 and 3. From Table 2 it can be inferred that while ELMs

TABLE 2: Comparison of sensitivity and
specificity of classification algorithms

Algorithm Sensitivity Specificity
LR 0.482 0.567

kNN 0.511 0.613

NB 0.679 0.689

SVM 0.734 0.787

DT 0.831 0.802

RFC 0.889 0.864

GB 0.901 0.897

ELMs 0.956 0.962
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TABLE 3: Comparison ofF1 score and
accuracy of classification algorithms

Algorithm F1 score Accuracy
LR 0.321 49.2%

kNN 0.495 53.8%

NB 0.689 60.0%

SVM 0.786 72.1%

DT 0.851 86.4%

RFC 0.901 89.1%

GB 0.926 90.2%

ELMs 0.972 98.3%

have outperformed several other classification algorithms, their robust performance in AD iden-
tification and classification can be attributed to choice of activation function employed, features
selected, and the data preprocessing methods adopted. Since ELMs do not adopt a gradient-based
training algorithm, they tend to converge at the global minima rather than the local minima. This
is one of the major reasons for their robust performance.

Another major observation that can be made from Tables 2 and 3is that ensemble-based
methods such as DT, RFC, and GB tend to perform better than SVM, NB, kNN, and LR.

This can be attributed to the fact that ensemble-based methods combine the predictions from
several base classifiers and make a final prediction by combining the outcomes of several of
these classifiers.

This is usually achieved by hard or soft voting, which are based on majority votes received
from each of the base models. The accuracy of kNNs may tend to drop with higher dimension-
ality of data since they employ Euclidean distance to assignclass probabilities. In such cases
of multidimensional data, SVMs tend to perform better. The optimization problem in SVMs in-
volves the finding of the most optimal hyperplane that lies atthe maximum distance from the
closest data points to it. SVMs are also capable of dealing with complex structures of data by
adopting kernels of higher-order polynomials.

Figure 6 presents a visualization of the AUC–ROC curve of theELM algorithm. The receiver
operator curve (ROC) summarizes the classifier’s performance based on tradeoffs between the
error rates of true positives and true negatives. The area under the curve (AUC) is a performance
metric that quantifies the probability of a classifier performing better in positive instances than
a negative instance. The ELM algorithm presented the highest AUC of 0.84, indicating that the
algorithm performs better within the positive instances (in 84% of the cases) than the negative
instances.

5. CONCLUSION

Since Alzheimer’s is a neurodegenerative disorder that progresses over time, no prescribed med-
ication can fully stop the disease’s progression. Therefore, it has become imperative to create
intelligent systems and techniques for its early detection. For this purpose, we propose an ex-
treme learning machine algorithm that outperforms contemporary binary classifiers in terms of
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FIG. 6: ROC characteristic curve of ELM

accuracy, sensitivity, and specificity. Extreme learning machines also outperform other algo-
rithms in terms of computational efficiency and easy deployment on edge devices. ELMs also
prove to overcome the disadvantages of traditional neural networks that adopt gradient-based
training methods and converge at the local minima. The proposed model is designed to be im-
plemented in healthcare systems that can alert clinicians and doctors of the patient’s onset of AD
and help in providing early diagnosis and treatment.
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