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Alzheimer’s disease (AD), one of the most common forms of dementia, is a cognitive disorder that
is progressive in nature and causes a dynamic deterioration of the mental state of an individual. It
severely damages the brain cells, neurotransmitters, and nerves, leading to irreparable damage to
the brain, which is one of the major causes of dementia. Early identification, assessment, and timely
diagnosis are of paramount importance to slow down the progression of the disease, which calls for
the design and development of algorithms and technology-aided tools for accurate detection, diagno-
sis, and prediction of the severity of Alzheimer’s disease. To provide a solution to this, we propose an
extreme learning machine (ELM) algorithm that is trained on neuroimaging data from longitudinal
MRI scans obtained from the OASIS database. We adopt an extensive feature engineering pipeline
to choose the most significant features for early identification of the onset of dementia. We obtain an
overall accuracy of 98.3%, sensitivity of 0.956, specificity of 0.962, and F1 score of 0.972. We also
show that our proposed ELM algorithm outperforms several other contemporary classifiers based on
a range of evaluation metrics. The paper also provides a feasibility analysis of the proposed model for
real-time clinical deployment.

KEY WORDS: dementia, Alzheimer’s disease, magnetic resonance imaging, extreme
learning machines, machine learning classifiers

1. INTRODUCTION

Alzheimer’'s disease (AD), which is an irrevocable cogmitdisorder, is one of the most com-
mon forms of dementia. It is known to have affected about 9banipeople worldwide, among

which over 60% of them belong to low- and middle-income caest The number of cases of
Alzheimer’s disease is exponentially increasing, with egrage of 10 million cases every year.
AD is expected to affect about 150 million people by 2050 stheading to severe economic
and medical consequences. Dementia or Alzheimer's dideassused by abnormal deposits
of proteins in and around the cells of the brain. For instatite amyloid protein produces

clumps around the brain cells, and another protein callegtaduces tangles around the brain
cells. Early diagnosis of Alzheimer’s disease is highlyligraying and often involves expensive
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and invasive tests that are available only in sophisticatimical settings, which makes them
infeasible for common people to adopt. For instance, bi&erarof amyloid and phosphorylated
tau assessed through cerebrospinal fluid examinations,se&Ts, and plasma assays are use-
ful for Alzheimer’s disease diagnosis, but these examingtiare not appropriate for screening
potential Alzheimer’s disease in primary care or communintexts. Numerous studies have
shown that there is no proven way to fully treat or stop thegpssion of Alzheimer’s disease
(De Strooper and Karran, 2016). In order to avoid irrevéesibemory loss, this calls for the
creation of extremely reliable and accurate methods for AByedetection, particularly at the
presymptomatic stages (Galvin, 2017).

To categorize the severity of AD under various conditionegisnages from various modal-
ities, several researchers have recently suggested nealg@ming— and deep learning (DL)—
based medical imaging methods (Aldhyani et al., 2020; Ziéirahal., 2011; Korolev et al.,
2017; Litiens etal., 2017; Qiu et al., 2018; Zhang et al.,A)@enkinson et al., 2002). Advanced
neuroimaging methods, such as positron emission tomogrdhT) and magnetic resonance
imaging (MRI), have been extensively used to find structaral molecular biomarkers for the
detection of onset of AD (Bartos et al., 2019; Fonov et al120/idoni et al., 2012). MRI is
a noninvasive imaging technique that offers crucial detaliout internal bodily structures, in-
cluding their location, shape, and size. It offers a notiesoft tissue contrast, enhancing the
clarity of images that are captured for analysis. Functiama structural imaging are the two
general categories for MRI, with tasking-state and ressirage functional imaging falling under
functional imaging. T1-weighted MRI, T2-weighted MR, adiffusion tensor imaging are the
three types of structural MRI imaging.

Accurate understanding of the human brain’s processesasagdied by PET imaging. The
diffusion of R18 fluorodeoxyglucose (FDG), which providagormation on the brain glucose
metabolic rates (CMRglc), is used in PET modality to createraimages. CMRglc is used to
distinguish between AD and other types of dementia. Whendifficult to distinguish between
variations in pathological and physiological morpholog®G PET can be especially useful.

In order to effectively identify and categorize brain dders, deep learning—aided techniques
have gained popularity due to their improved robustnessaandracy in feature extraction. Fea-
ture representation and extraction play a vital role in thalysis of medical images. Numerous
pattern recognition techniques, including support veatachines (SVM), logistic regression
(LR), linear program boosting method (LPBM), linear disginant analysis (LDA), and support
vector machine-recursive feature elimination (SVM-RHEye been widely used to identify
and classify AD as well as predict the course of the diseaath(iRe et al., 2017). Deep learn-
ing has the advantage of automatically identifying theufezd from a given dataset for a given
application. This is typically not feasible using traditad feature extraction techniques, which
necessitate some prior knowledge for feature extracti@epbearning—based approaches are
also capable of discovering novel features that are seit@blspecific uses; this is very helpful
in classifying and predicting fatal disorders, which inrturelps to avoid their occurrence by
early detection.

Although there has been significant improvement in medioalysis using machine learn-
ing, there are some problems that researchers still facedidBnosis is usually a multiclass
classification problem, and the brain’s structure has featthat have high correlation, leading
to certain disadvantages.

In this paper, we propose a robust extreme learning machatead trained to identify the
onset of Alzheimer’s disease based on features obtainedlfnagitudinal MRI scans. The pro-
posed algorithm is compared with state-of-the-art macld@aming classifiers based on metrics
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such as accuracy, sensitivity, specificity, and F1 score.péper is organized into the following
sections. Section 2 presents an overview of the existindeim@ntations and approaches per-
taining to Alzheimer’s disease identification and predictof progression. Section 3 describes
the methodology adopted in this paper, followed by an aimbf¢he results obtained in Section
4. Concluding remarks and future implementations are dsediin Section 5.

2. RELATED WORK

Recently, several computer vision algorithms (Suma et8R2a) have been used to carefully
examine significant patterns in the brain tissues of AD padiand thereby derive methodolo-
gies to aid early disease detection and thus suppressetd®tb some degree. The significance
of influential biomarkers for image classification has bespleasized by numerous studies.
The region-based method of feature extraction for AD clasdion using MRI and PET im-
ages has been suggested by Zhang et al. (2011), Liu et ab);2Buk et al. (2015), and Suma
et al. (2022b). Human brain scans are used to map the firstnfiounents and the entropy of
histograms of anatomical regions of interest in order to faglonal features. Numerous studies
have used machine learning— and deep learning—based ntodeémntify significant structural
variations in the entorhinal cortex, hippocampus, and ddampus regions of the brain by con-
trasting the brain tissues of AD patients and healthy imhligis. Different imaging methods,
including structural and functional magnetic resonancagimg, single-photon emission com-
puted tomography (SPECT), diffusion tensor imaging (Daid positron emission tomography
(PET), are used to detect changes in the brain tissues sttlol degeneration of brain cells.

Payan and Montana (2015) proposed a pattern classificatgt@ens and tested an algorithm
that combines 3-D convolutional neural networks (CNNs) sparse autoencoders for the pre-
diction of AD. In order to combine multimodal features fronRWand PET scans and further
categorize the severity of AD, Liu et al. (2015) found 83 RAlsese ROIs will be used to train
a neural network with multiple layers of autoencoders.

The quality of the data is important in computer vision apggions, and smaller datasets
frequently result in less accurate models. To address sliesscaused by a limited dataset, re-
searchers have turned their attention to recent develotsrimedeep learning such as the use of
residual dense neural networks and batch normalizatioesd hlso help with automatic feature
generation, making them useful for training 3-D MRI imagéghaut intermediary feature ex-
traction. A significant restriction of brain MRI data is rdd to its high dimensionality (Liu et
al., 2020), which requires the use of significant computatipower and a sizable dataset for
deep neural network training in order to achieve a signifitewel of accuracy in classification
tasks. Researchers have begun to use ensemble-based srtetbadrcome the constraints pre-
sented by computational complexity, high dimensionadityd lower accuracy due to the small
datasets in tasks related to AD identification and classifica

A classification based on an ensemble of DL architecturasgygested by Ortiz et al. (2016)
for the early detection of AD. The key feature of this methethiat gray matter taken from the
brain is divided into 3-D patches based on areas identifigtidbputomated anatomical labeling
atlas. The resulting patches are used to train numeroushidiel networks, and an ensemble
voting method is used to carry out the final classificationeXtract the resident features from
MRI scans that are subsequently used for AD classificatiorgt lal. (2018) have suggested
a multiple cluster—based DenseNet. Extraction of 3-D petdh carried out from each of the
numerous local regions that make up the complete cerebraxcd)sing k-means clustering,
these extracted patches are then further organized instec) and patch features are pulled
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from each cluster using DenseNet. The classes are derivetlisigring the features that were
learned from each of these groupings. To determine the flaasification for the image, the
predictions received from each local region are combinteid.dlso claimed that segmentation
and rigid registration as part of image preprocessing atenacessary for this technique of
feature extraction.

Gorjiand Kaabouch (2019) suggested a robust convolutiosalal network architecture that
is used to extract high-quality features from brain MRI scand is used to categorize them as
either healthy, early mild cognitive impairment, or latddrdognitive impairment (LMCI). The
analysis is done in sagittal view, and the results show tM&E Land control normal (CN) groups
can be classified with 94.54% accuracy. Basheera and Sai Ral0)(suggested a method for
extracting gray matter from the human brain and classifyhreyfeatures that were extracted
using a modified CNN architecture. The voxels were enhansedjw Gaussian filter, and then
the skull stripping method was used to remove redundantesssA hybrid, independent, and
improved component analysis was used to conduct voxel sgigtitn. CNN was supplied with
segmented gray matter, and this method had a 90.47% acaatacy

Karim et al. (2017) proposed a multi-task binary classifaatwhich is used to categorize
subjects with mild cognitive impairment (MCI), Alzheimsrdisease (AD), and normal control
(NC) subjects. The suggested method has a 91% accuracy-usien on the fully connected
layer as well as on a single-projection CNN output were ba#dun this technique.

Among all the ROls, the hippocampus was found to be the mgstf&iant anatomical and
impacted area in AD patients. Numerous studies (Amorosb, &4 8; Beg et al., 2013; Chupin
et al., 2009; Gerardin et al., 2009; Ho et al., 2011; Leungl.e2810; Lindberg et al. 2012;
Platero and Tobar, 2016; Shen et al., 2012; Li et al., 2012} kaggested different approaches
for computing the volumetric characteristics and shapenfhilateral hippocampi. Cao et al.
(2018) has proposed a multi-task DL technique, which is ugestgment the hippocampal re-
gion of the brain using MRI scans, along with clinical scargression. A method for performing
hippocampal segmentation using anatomical and probibitisors was suggested by Chupin
et al. (2009). A technique to gauge the hippocampal regimiismetric parameters was created
by Platero and Tobar (2016). Using MR, this data was usedparmte AD/MCI patients from
healthy groups. A fast, multi-atlas segmentation techaigpas used. For the purpose of diag-
nosing AD, shape analysis is frequently combined with vatrin analysis of the hippocampus
to capture the complex morphology of this part of the brain.

In the following section, we describe our approach to idgrnd classify the onset of AD.

3. MATERIALS AND METHODS

Figure 1 represents the overall methodology adopted invtbik. Initially, longitudinal MRI
scans are preprocessed, and feature engineering stegpheel 0 obtain clinical features from
the neuroimages. These features are obtained from the QA8é&abase (Marcus et al., 2007)
and are then iterated over a forward feature selection itthgorto select the most significant
features that contribute to the identification of Alzheifméelisease. The features are then ranked
based on priority and fed to an extreme learning machine arktthat achieves exceptional
training speed by eliminating the gradient-based tectaidibe ELM network is then tuned us-
ing various hyperparameter tuning techniques for achgexitust performance. The proposed
network is compared with off-the-shelf machine learniragsifiers based on several evaluation
metrics. In biomedical applications, sensitivity is anlaesion metric that is given the high-
est priority since it quantifies the ability of the algorithm predict the proportion of patients

Journal of Machine Learning for Modeling and Computing



Assessment Neuroimaging and Identification Alzheimersese Using Learning Machines 81

Longitudinal MRI Scans

YT
b ‘ N / Prediction and Characterization of Onset
3% of AD and its Progression

. T'E":“"g G Model Model
— s v Optimization Evaluation and

Learning and Tuning Comparison

|: +| Machine (ELM)

R NN

Alzheimer's Disease vs Healthy

FIG. 1: Proposed methodology

possessing a particular disease. Hence, in our case,iggnsit the model would quantify the
ability of the model to rightly identify patients with the set of Alzheimer’s disease. The fol-
lowing subsections describe the methodology in detail.

3.1 Dataset Description

The dataset used in this paper consists of clinical parametd 50 subjects obtained from lon-
gitudinal MRI scans. The subjects are aged between 60 and&8,yeach subject was reported
to visit the hospital at least twice, and the duration of satian between the visits was at least
one year, for a total of 373 imaging sessions. The subjectsde both males and females, and
for each of them, three or four T1-weighted MRI scans areuighet! as a part of the dataset. Out
of the 150 subjects under consideration, 72 subjects werdifted as nondemented. Sixty-four
subjects were characterized as having dementia duringitiigal visit to the hospital, out of
which 51 subjects were diagnosed with Alzheimer’s disedsrildl to moderate severity. The
remaining 14 subjects were identified as not having demelntizng their initial visit but were
later diagnosed with dementia during their subsequertt Vigble 1 presents an overview of the
dataset adopted in this work.

3.2 Exploratory Data Analysis (EDA)

We adopted a range of data visualization techniques torobtdical information about the dis-
tribution of classes, analyze the age groups that are miesttedl by Alzheimer’s disease, and
determine the correlation between various clinical fesgwinder consideration. A correlation
analysis is performed alongside feature selection to dise@dundant features. Figure 2 illus-
trates the distribution of classes in the dataset where ofdbie subjects are classified as not
having dementia, followed by the demented group. The coegerategory represents the num-
ber of subjects that were nondemented during their iniiiit but were identified as demented
during their subsequent visit.
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TABLE 1: Dataset description

Parameter Subjects
Demented 64
Nondemented 72

Mild/moderate Alzheimer’s disease 51
Demented during subsequent visit 14

Total 150
70
60
50
€ 40
=
8
30
20
§ -
0
Nondemented Demented Converted
Group

FIG. 2: Distribution of classes

Figure 3 portrays the distribution of demented and nondéedecategories with respect to
the gender ratio. It can be inferred that most females areeroented as compared to males,
which puts males at a slightly higher risk of dementia.

Analyzing age groups that are most likely to be affected wittheimer’s disease is the first
step toward developing algorithms for early identificatadrits onset. Figure 4 depicts a plot of
the distribution of age groups and the corresponding nurabsubjects belonging to that age
group to have been diagnosed with Alzheimer’s disease eStshin the age group between 73
and 78 years are seen to be the most affected with dementitsgmdgression.

3.3 Feature Engineering
This subsection presents a brief overview of the differesttires adopted in this paper for
achieving the task of early detection of the onset of Alzheisndisease.

3.3.1 Clinical Dementia Rating (CDR)

This metric is obtained from interviews of the subject and ithformant by a clinician who
characterizes a subject based on six different paramegersely: memory, orientation, problem
solving, community affairs, hobbies, and personal car@ rEting is based on a 5-point scale,
where a CDR of 0 indicates no dementia, 0.5 indicates verg All), 1 indicates mild AD, and
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FIG. 4: Analysis of age groups affected with dementia

2 indicates moderate AD. The scores for the six individuahpeeters are provided initially, and
a cumulative score is calculated using an algorithm. Thigeseas an important parameter in
determining the level of dementia a subject suffers fromigmprogression.

3.3.2 Estimated Total Intracranial Volume (ETIV)

In the study of neurodegenerative disorders, it is impartarperform volumetric analysis of
the brain to estimate the maximum premorbid brain volumeé.dBuanalysis, it was found that
the average value of eTIV neither varied with time nor witke gBubjects. On an average, men
showed~12% larger eTIV than women.

3.3.3 Cognitive Impairment

Cognitive impairment is a state of the mind that causesaethmemory, difficulty in compre-
hending new information, and lack of decision-making #ilbn a scale of 30, a normal person
is expected to have a cognition score of 24, whereas a scd@tof23 indicates mild cognitive
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impairment, a score of 10 to 18 indicates a moderate cogriitipairment, and a score below 9
indicates severe cognitive impairment.

3.3.4 Mini-Mental State Examination Score (MMSE)

The Mini-Mental State Examination (MMSE) is a 30-point (Origethe worst and 30 being the
best) questionnaire that is used extensively in clinicdl@search settings to measure cognitive
impairment. It is commonly used in medicine and allied He#dtscreen for dementia. It is also
used to estimate the severity and progression of cognitiyairment and to follow the course
of cognitive changes in an individual over time, thus maktran effective way to document an
individual’s response to treatment.

Alongside the above clinical parameters, the normalizedlesbrain volume (nWBV) and
the atlas scaling factor (ASF) are also considered. The nW/percentage of all the volu-
metric pixels (voxels) in the atlas masked image that arssiflad as gray or white matter in
the tissue segmentation process. The ASF is a computedgéatitor used for transforming the
native brain space and skull to the atlas target.

To identify potential relationships between the featumedar consideration and to determine
outliers and redundant features, a correlation matrix as/stin Fig. 5 is plotted. The matrix
depicts the fact that the delay in MRI imaging sessions tipairicular subject has undergone is
directly related to the number of visits to the hospital. Arer set of highly correlated features
is the clinical dementia rating index and the category toclwla subject belongs (nondemented,
demented, or converted).

3.4 Comparison of Classification Algorithms

In this paper, we train various binary classification altjoris for identification of Alzheimer’s
disease and its onset. The algorithms are evaluated urfteredi metrics, which are described
in the following section, and the most robust model is selg¢ttased on its performance on these
metrics as well as the computational complexity of the athor.

3.4.1 Logistic Regression (LR)

Logistic regression (LR) is a statistical model that is usebinary classification problems and
helps model the target variable using the logistic or thesig function, given by

B 1 _e”
T l4em l4er

F(x) 1)
Equation (1) converts the range of values that the modebkdeith from (—%, k) to (0, 1).
Assumingp(z) to be a linear function ir:;, and applying a logit transformation, we obtain the

following mathematical model:

logﬂ =ag+ax*zx. (2

1—p(x)

Since the output of the logistic regression algorithm isas€lprobability, Eq. (2) can be fit
using a likelihood estimation, given by
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L(ag,a) = [ [ p(x:)"* 11 — p(a:)] 4, &)
i=1

where the outputipif y =1or1—pif y =0.

3.4.2 k-Nearest Neighbors (KNNs)

The concept behind the working of k-nearest neighbors (R\ise be described as the process
of finding the closest point to the given input. The algoritblassifies unseen test points using
majority votes from the k-nearest neighbors. The first stejné algorithm is to apply a trans-
formation to the data points to convert them into vectorse alyorithm works by finding the
distance between each data point and the test data poinhandinds the probability of the
points resembling the test data. Finally, classificatiobhdsed on the points that share highest
probabilities. After the computation of the Euclidean diste, the input is assigned to the class
with the highest probability, given by

Ply=j|X =2)=7 Y1l =) @
i€A
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3.4.3 Naive Bayes (NB)

Naive Bayes (NB) is a supervised learning algorithm thatiappghe Bayes theorem to predict
output class probabilities, given by

p(A)p(B | A)
p(B)

The NB algorithm finds the class of observatigngiven the set of features. Assuming the
set of features are given &s,, x> . . . 2, }, the NB algorithm can be formulated as follows:

p(A|B) = (5)

P\Y:)p\ X1, Z2...Tn | Y;
p(yi | yz‘Il,Iz---Inxbxz---xn) = ( Z) ( n| l)- (6)
p(x1,x2. .. Tp)

3.4.4 Support Vector Machines (SVMs)

The major goal of support vector machines (SVMs) is to findrtteest optimal hyperplane that
separates the data points with maximum margin. The algorihents the hyperplane at the
maximum distance from the closest member of both classeachi@ve this, SVMs solve the
following optimization problem:

1,
min -
min o]

subject toy; (z; + w*b) > 1 (7)
fori =1,2,3...n.

3.4.5 Decision Trees (DT)

The algorithm selects the best attribute and assigns iteadehision node, using the attribute
selection measure (ASM) to split the given records. The ASM heuristic for selecting the
best criterion to partition the data. The ASM ranks eachuieabased on a set of rules, and the
best attribute or feature is chosen as the splitting ateildua this paper, we use the information
gain as an ASM to iteratively select the best set of attriguiéhich is defined as the difference
between the entropy before split and average entropy gitiéy Isased on a selected attribute.
Information gain is mathematically described as

I(T) = - Zpilogzpia (8)
i=1
wherep; is the probability that a tupl& belongs to clas€’;.

3.4.6 Random Forest Classifier (RFC)

Random forest classifiers (RFCs) are an ensemble of dediges, where the final prediction
of the algorithm is based on the individual predictions freath decision tree. This is mathe-
matically formulated as

ZjeT normf;;

RF’L: )
/ T

(9)
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whereT’ is the total number of decision treesyrm f;; is the normalized featurein treej, and
RF f; is the importance of featuriecalculated over all trees in the RFC model.

3.4.7 Gradient Boosting (GB)

The gradient boosting (GB) classifier is an ensemble methatidombines predictions from
several base classifiers. The algorithm uses the crosspgritrss function, which is given by

L = —[yilogigp + (1 —y;)logio(1—p)]. (10)

3.5 Extreme Learning Machine (ELM)

Conventional neural networks employ gradient-baseditrgialgorithms, such as back propa-
gation, that often do not achieve the global optimal sotutithese algorithms are dependent on
the initialization of parameters and the complexity of teatfire space and hence often converge
at local extrema. Unlike traditional algorithms, extreraarhing machines (ELMs) assign ran-
dom weights to the nodes between the input layer and the hidgter, and these values are kept
fixed throughout the training process rather than iterbtiupdating the weights (Wang et al.,
2022). ELMs only learn the weights between the hidden laperthe output layer, and hence
they tend to converge much faster than the traditional graebhased algorithms. ELMs achieve
a comparable performance to other deep neural networke widintaining a lower computa-
tional complexity. The process of ELM training can be catemgul into two stages, namely:
random parameter initialization and linear parametertemiuRandom weights; and bias;
are initialized in the hidden layer and remain unchangeéhdithe training process. The input
vector is then mapped into a feature space with stochastargder values and nonlinear acti-
vation functions, which shows superior performance tatieely trained parameters. The ELM
achieves robust generalization capability by using a piesse approximation for a nonlinear
continuous activation function. In the next step, the otipeight matrix3 is obtained using the
Moore—Penrose inverse, and it is then formulated as a lpredlem.

Consider the following training set:

xr = {Il,l’z,iﬂg,...x]\/‘}, (11)
where N represents the total number of samples in the training setzarepresents théth
training sample.

The set of targets are represented as:

t = {ti,to,t3,...tn}, (12)

wheret; is an array of binary values containing the class valuesHer:t sample from the
training set. The final output of the ELM is denoted as

L L

0j = Z Bigi(w) = Z Bigi(w; * x; + b;), (13)
i=1 =1

wherej = 1,2,3,... N, g;(x) is the activation function in the hidden layer of the network

The objective function of the ELM is the one that minimizes thss between the predicted and

actual values. The commonly used function is the mean squarer (MSE), which is defined

as
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N

MSE = Z (tij — Oij)z, (14)
i=1

wherej = 1,2,3,...m, N is the total number of training samples, anahd; are the indices

for the training sample and the output node, respectively.
Initially the weights matrix is constructed for the inpuyéa, given by the following:

rand --- rand
W = : : . (15)

rand --- rand

The output matrix of the hidden layer is calculated, and divatoon function is applied, which
introduces nonlinearities in the network.

H=W=xX. (16)
The Moore—Penrose pseudoinverse is computed for the oufguix of the hidden layer, which
is mathematically described as follows:
Ht = (HT «H) "« HT. 17)

The output weight matri is computed as

B=HtxT. (18)

Equation (18) is used to compute the output matrix for thertgslata, and a resultant matrix is
obtained, given as follows:

O=Hxp. (19)

The Softmax algorithm is used to obtain the final class priitiab, and the output matrig is
compared with the set of targetso evaluate the performance of the algorithm.

3.6 Evaluation Metrics

To select the most robust model for Alzheimer’s diseasesifieation, a range of evaluation
metrics are adopted. The following metrics are considaratis work. Accuracy is a measure
of the number of total observations (both positive and negpthat are correctly classified.

In terms of true positivesi(P), true negativesi{N), false positives ' P), and false nega-
tives (F'N), accuracy can be computed as

TP+ TN
TP+TN+FP+ FN’

Specificity and sensitivity provide valuable performaneadhmarks for evaluating the pre-
dictive performance of binary classifiers. Specificity cfifeas the percentage of true negatives
(T'N), which in our case is the number of correct predictions ntadine nondemented subjects.
Itis calculated as

(20)

Accuracy =
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TN
TN+ FP’

Sensitivity, on the other hand, quantifies the proportiotrwé positives (TP), or the recall
rate, which is the number of correct predictions on the deaterecords. In this paper, we pri-
oritize sensitivity over specificity since it is of prime imgance to rightly predict a demented
record rather than failing to classify a nondemented rec®edisitivity is mathematically calcu-
lated as

Speci ficity = (22)

TP
TP+ FN’

F1 score is defined as the harmonic mean of the precision amadl teat quantifies the
performance of a classification algorithm. It is mathenaditycgiven as

(22)

Sensitivity =

2 Precision * Recall
F1s8 = 23
core Precision + Recall '’ (23)

where precision is the percentage of positive samples teatghtly predicted, which is mathe-
matically given by

. TP
Precision = Terin (24)

4. RESULTS AND DISCUSSION

We have compared the performance of several machine Igadhassifiers, namely: random
forest classifier (RFC), decision trees (DT), support vestachines (SVM), naive Bayes clas-
sifier (NB), k-nearest neighbors (kNNs), logistic regress{LR), gradient boosting classifier
(GB), and extreme learning machines (ELMs). Table 2 prasamerformance comparison of
the various classifiers under consideration, and on exjeatiation it was found that the pro-
posed extreme learning machines outperformed the contamypdassifiers.

As described in the previous section, the algorithms weadueted on metrics such as ac-
curacy, sensitivity, specificity, anfll score. The performance of the algorithms based on these
parameters is presented in Tables 2 and 3. From Table 2 it eanférred that while ELMs

TABLE 2: Comparison of sensitivity and
specificity of classification algorithms

Algorithm | Sensitivity | Specificity

LR 0.482 0.567
kNN 0.511 0.613
NB 0.679 0.689
SVM 0.734 0.787
DT 0.831 0.802
RFC 0.889 0.864
GB 0.901 0.897
ELMs 0.956 0.962
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TABLE 3: Comparison of'1 score and
accuracy of classification algorithms

Algorithm | F'1 score | Accuracy
LR 0.321 49.2%
kNN 0.495 53.8%
NB 0.689 60.0%
SVM 0.786 72.1%
DT 0.851 86.4%
RFC 0.901 89.1%
GB 0.926 90.2%

ELMs 0.972 98.3%

have outperformed several other classification algorithihesr robust performance in AD iden-

tification and classification can be attributed to choiceativation function employed, features

selected, and the data preprocessing methods adopted ERiMs do not adopt a gradient-based
training algorithm, they tend to converge at the global miarather than the local minima. This

is one of the major reasons for their robust performance.

Another major observation that can be made from Tables 2 asdtgat ensemble-based
methods such as DT, RFC, and GB tend to perform better than, BBVIKNN, and LR.

This can be attributed to the fact that ensemble-based miettwnbine the predictions from
several base classifiers and make a final prediction by cangpthe outcomes of several of
these classifiers.

This is usually achieved by hard or soft voting, which areegilasn majority votes received
from each of the base models. The accuracy of KNNs may tentbwiith higher dimension-
ality of data since they employ Euclidean distance to asslgss probabilities. In such cases
of multidimensional data, SVMs tend to perform better. Théroization problem in SVMs in-
volves the finding of the most optimal hyperplane that liethatmaximum distance from the
closest data points to it. SVMs are also capable of dealinly @amplex structures of data by
adopting kernels of higher-order polynomials.

Figure 6 presents a visualization of the AUC—ROC curve ofhkl algorithm. The receiver
operator curve (ROC) summarizes the classifier's perfoomdased on tradeoffs between the
error rates of true positives and true negatives. The aréaruhe curve (AUC) is a performance
metric that quantifies the probability of a classifier parforg better in positive instances than
a negative instance. The ELM algorithm presented the highle€ of 0.84, indicating that the
algorithm performs better within the positive instances84% of the cases) than the negative
instances.

5. CONCLUSION

Since Alzheimer’s is a neurodegenerative disorder thagneisses over time, no prescribed med-
ication can fully stop the disease’s progression. Theegfitthas become imperative to create
intelligent systems and techniques for its early detectier this purpose, we propose an ex-
treme learning machine algorithm that outperforms contmeny binary classifiers in terms of
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FIG. 6: ROC characteristic curve of ELM

accuracy, sensitivity, and specificity. Extreme learningchines also outperform other algo-
rithms in terms of computational efficiency and easy deplenton edge devices. ELMs also
prove to overcome the disadvantages of traditional newgavarks that adopt gradient-based
training methods and converge at the local minima. The peganodel is designed to be im-
plemented in healthcare systems that can alert cliniciadslactors of the patient’s onset of AD
and help in providing early diagnosis and treatment.
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